# INSTRUCTION MANUAL 

> TYPES $1100,1100-\mathrm{R}$ $1120,1120-\mathrm{R}$ SINGLE AND DUAL TRACE OSCILLOSCOPE MAIN FRAMES

## i



INSTRUMENTCORPORATION ANAlytical LABoratory Instruments for Science and Indisitry

## INSTRUCTION MANUAL

## TYPES 1100, 1100-R, 1120, 1120-R OSCILLOSCOPE MAIN FRAMES



Type 1100 Main Frame with Typical Plug-in Partially Removed

THIS INSTRUCTION MANUAL IS SHIPPED WITH:
TYPE 1100, SERIAL NO.
TYPE 1100-R, SERIAL NO. $\qquad$
TYPE 1120 , SERIAL NO.
TYPE 1120-R, SERIAL NO.

## Analab

ANAlytical LABoratory Instruments for Science and Industry

-     - 

Copyright 1962
ANALAB INSTRUMENT CORPORATION
Cedar Grove, N. J., U. S. A.

## CONTENTS

Section I
Specifications
Specifications
Section II
Operating InstructionsPage
1
2-1. General Description ..... 2
2-2. Controls and Terminals ..... 2
2-3. Power Switch, Intensity, Focus Control ..... 2
2-4. Beam Finder ..... 2
2-5. Scale Illumination ..... 2
2-6. Y Position Control ..... 2
2-7. X Position Control ..... 2
2-8. X Display Selector ..... 2
2-9. Rear Input Terminals ..... 2
2-10. X and Y Deflection Plates ..... 3
2-11. Z Input ..... 3
2-12. Sawtooth Output ..... 3
2-13. External Capacitor ..... 3
2-14. Manual Trigger Contacts ..... 3
2-15. Off-Ground Operation ..... 3
2-16. Additional Rear Terminals on Rack-mounted Type 1100 ..... 3
2-17. Bandwidth Switch ..... 3
2-18. CRT Alignment Lever ..... 3
2-19. Astigmatism Adjustment ..... 3
2-20. X and Y Amplifier Gain ..... 3
2-21. Dual-Trace Presentations ..... 4
2-22. Y Display Function Selector ..... 4
2-23. X Display Function Selector ..... 4
2-24. A and B Separation Control ..... 4
2-25. Use of Chopped or Alternate Switching Modes ..... 4
2-26. Synchronizing Two Harmonically Related Signals ..... 4
2-27. Synchronization of Non-Harmonically Related Signals ..... 5
2-28. Z Input and Chopper Blanking ..... 5
2-29. Separation Balance ..... 5
2-30. Plug-ins with Null Readout ..... 5
2-31. Use of Null Readout to Measure Phase ..... 5
2.32. Use of Trigger Amplifier to Increase Gain ..... 5
Section IIIBlock Diagram
Page
3-1. General ..... 6
3-2. Y Post Amplifier ..... 6
3-3. X Post Amplifier ..... 6
3-4. Direct Connection to Deflection Plates ..... 6
3-5. High Voltage Supply ..... 6
3-6. Z Axis Input ..... 6
3-7. Low Voltage Supply ..... 6
3-8. Off-Ground Operation ..... 6
3-9. 115 V or 230 V Operation ..... 6
3-10. Electronic Switch ..... 6
Section IV
Maintenance
4-1. Removal of Panels ..... 8
4-2. Reversal of Tilt Foot ..... 8
4-3. High Voltage Supply ..... 8
4-4. Low Voltage Supply ..... 8
4-5. Cathode-ray Tube Replacement ..... 8
4-6. Illuminated Scale Bulbs ..... 8
4-7. Tube Replacements ..... 8
4-8. Standard Parts ..... 8
4-9. Special Parts ..... 8
4-10. Rack Installations ..... 8
4-11. Installation of Type 9002 Slides ..... 9
4-12. Servicing the Rack Oscilloscope ..... 10
4-13. Test Procedure ..... 10
4-14. Terminal Board Layout ..... 12
4-15. Replacement Parts ..... 14
4-16. Schematics ..... 17-27
Section V
Warranty and Repairs
5-1. Claim for Damage in Shipment ..... 29
5-2. Warranty ..... 29
5-3. Returning Instruments for Repair ..... 29
5-4. Shipping ..... 29


TYPE 1100 OSCILLOSCOPE MAIN FRAME WITH
TYPE 700 DUAL CHANNEL HIGH-GAIN PLUG-IN IN PLACE

## SECTION I - SPECIFICATIONS

(WITHOUT PLUG-IN)

| TYPES 1100 AND 1100-R <br> $X$ AND $Y$ AMPLIFIERS |  |
| :---: | :---: |
| BANDWIDTH $\qquad$ DC to $500 \mathrm{kc}(3 \mathrm{db})$ <br> SENSITIVITY |  |
|  |  |
| OFF-GROUND OPERATION | Instrument may be operated safely up to 500 volts DC off ground, with case grounded, by opening link at rear. |
| CATHODE-RAY TUBE |  |
| TYPE .............................................................Analab Type 5AQP-B, metallized mono-accelerator tube operated at 3 KV accelerating potential. P31 normally supplied; P2, P7 and P11 optionally available. |  |
| CRT BEZEL $\ldots \ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l i g h t-p r o o f ~ b e z e l ~ f o r ~ m o u n t i n g ~ o s c i l l o s c o p e ~ c a m e r a s ~ a n d ~ t o ~ h o l d ~ C R T ~ s c a l e ~ a n d ~ f i l t e r . ~$ |  |
| CRT SCALE $\qquad$ Anti-parallax, edge-lighted with controllable illumination. $10 \mathrm{~cm} \times 10 \mathrm{~cm}$, marked in cm squares. Appropriate filter provided for P31, P2, P7 and P11 screens. |  |
| CRT PLATES $\qquad$ Direct connection to deflection plates via terminals at rear; selected by slide switch. Sensitivity approximately $24 \mathrm{v} / \mathrm{cm}$. |  |
| INTENSITY MODULATION | ..Terminals at rear. Input impedance 10 K ohms. Beam blanks on positive signal from 5 to 50 volts. |
| BEAM FINDER | Momentary contact switch electrically reduces amplifier output and scales down display, permitting location of beam and centering with $X$ and $Y$ position controls. Provides "notch" location of signals on expanded sweeps. |
| POWER REQUIREMENTS |  |
| line voltage $\qquad$ Will operate at $115 / 230$ volts $\pm 10 \%$. Line voltage selected by changing wiring of transformer primary. |  |
| LINE FREQUENCY $\qquad$ 50 to 2500 cps . Lower line voltage operation increases above 400 cps , but no more than 115 volts for sinusoidal powerline waveform. |  |
| POWER DEPENDING UPON PLUG-IN ............1.5-2.5 amps at 115 volts. 0.75 l 1.25 amps at 230 volts |  |
| MECHANICAL SPECIFICATIONS |  |
|  |  |
| WEIGHT ...................................................... 35 pounds unpacked. Shipping Weight: 40 pounds. |  |
|  |  |
| TILT FOOT . ...........................................Folds away when not in use. May be mounted front or rear. |  |
| OPTIONAL SLIDES ...........................................Provision made for mounting slides on rack models. |  |
|  | TYPES 1120 AND 1120-R |
| All specifications same as Types 1100 and 1100 -R, except for dual-trace presentations by inclusion of electronic switching circuitry. |  |
| ELECTRONIC SWITCH |  |
| REPEIITION RATE ..........................................Chopped mode at approximately 40 KC . Switching tails blanked. |  |
| ALTERNATE SWITCHING ...................................At end of sweep during return trace interval. No switching "serrations." Permits simul. taneously synchronized display of non-harmonically related signals. |  |
| SWITCHING LEVEL |  |
| WEIGHT ............................ | . 40 pounds unpacked. Shipping weight: 45 pounds. |

# SECTION II OPERATING INSTRUCTIONS 

TYPES 1100 AND 1100-R

## 2-1. GENERAL DESCRIPTION

The Type 1100 is a basic main frame that can be operated as a simple cathode-ray tube indicator or with a variety of plug-ins. The simplest form of operation is achieved by using the Type 100 X-Y Plotter which permits energizing the main frame and provides access to the X and Y post amplifiers. Under these conditions the Type 1100, or its rack mounted version, is a stable X-Y plotter with a deflection sensitivity on each axis of 0.04 volts $/ \mathrm{cm}$. Well regulated power supplies for operation of the cathode-ray tube are incorporated in the Type 1100, as well as vertical and horizontal positioning circuits.

## 2-2. CONTROLS AND TERMINALS

Operating controls for the Type 1100 are on the front panel, while various input terminals are available at the rear. Internal slide switches permit convenient switching to the deflection plates of the cathode-ray tube and reduction of the bandwidth of the amplifiers. The functions of each control are outlined below as they would function with a typical plug-in.

## 2-3. POWER SWITCH, INTENSITY, FOCUS CONTROLS

Turn the oscilloscope on and allow 20 seconds for a delay relay to apply B+ voltage to the tubes. Adjust the Intensity and Focus controls for a sharp spot. (Caution: Keep the spot intensity at a low level when it is stationary so as not to burn the screen.)

## 2-4. BEAM FINDER

If no spot appears on screen even at full intensity, rotate the Beam Finder control (a spring loaded switch) to automatically locate the spot or trace. While holding the Beam Finder on, center the spot or trace with the X and Y Position Controls and then release the Beam Finder. The spot or trace will then be approximately on center. This control will be extremely useful for locating the spot or trace under any conditions of operation. If no spot appears on screen with the Beam Finder operating, only two conditions can cause this. Either the Intensity control has to be advanced more, or a signal with an extremely high DC component drives the amplifiers beyond the range of the Beam Finder or the preamplifier is grossly out of balance.
The Beam Finder is also very useful in expanded sweep applications. With the sweep expanded, turn on
the Beam Finder. With the horizontal positioning control move the desired portion of the trace to the center of the screen. When the Beam Finder is released, the "tagged" part of the display will automatically be centered and expanded.

## 2-5. SCALE ILLUMINATION

This control is calibrated in f stops. For Polaroid Type 47 film, set the scale illumination at $f / 5.6$ and the camera shutter to the same aperture. The shutter exposure should be $1 / 2 \mathrm{sec}$. for good contrast of the scale. This calibration is for red illumination of the scale.

For visual work the scale control may be varied for optimum scale illumination under different ambient light conditions. If white illumination of the scale is preferred, remove the bezel with the scale and rotate it $180^{\circ}$. (This changes the $\mathrm{f} /$ stop calibration.)

If a filter is used to increase trace contrast, insert it between the face of the cathode-ray tube and illuminated scale. If necessary, open the clamp on the CRT base and move the tube back to allow for the added thickness of filter.

## 2-6. Y POSITION CONTROL

Moves the trace vertically. The black and red knobs are fastened to the same shaft in the Types 1100 and $1100-\mathrm{R}$. In the dual-trace Types 1120 and $1120-\mathrm{R}$, the black knob controls the Y Display Function switch. Operates for either A or B channels on dual channel plug-ins.

## 2-7. X POSITION CONTROL

Moves the trace horizontally, when either the sweep time base or X amplifier is used.

## 2-8. X DISPLAY SELECTOR

This control selects the combination of signals to be applied to the X and Y axis when dual channel plug-ins are used. Either channel may be displayed against a sweep by proper positioning of the control. Moreover, the signal on either channel may be display against a calibrated 10 cm sweep or an expanded calibrated 50 cm sweep. Finally, signals may be plotted against each other, either for the Type 1100 alone, or when a plug-in is used, with the Display Selector in the A vs B position.

## 2-9. REAR INPUT TERMINALS

Direct access to the X and Y deflection plates; the Z input; connection for an external capacitor; and the

## section II - operating instructions

manual trigger switch contacts are available at terminals on the rear panel. When the rear input terminals are not used, they should be shorted out to prevent stray pickup. Similarly the front input terminals should be shorted out for rear-input operation.

## 2-10. X AND Y DEflection plates

Direct access to the X or Y deflection plates is made through clearly marked terminals at the rear. A circuit ground terminal is also provided. Direction of deflection for single ended input is shown. To complete the signal path from these terminals to the deflection plates, throw the slide switches at the top of the post-amplifier terminal board inside the cabinet.

## 2-11. Z INPUT

Open the connection between the Z input and ground. Intensity modulation of the trace is then possible by connecting a signal to these terminals. The level of signal required to fully blank the trace depends upon the intensity level and varies from about 5 to 50 volts. Reconnect the Z input terminal to circuit ground when intensity modulation is not used.

## 2-12. SAWTOOTH OUTPUT

The sweep sawtooth voltage is available at a rear terminal. Its peak to peak amplitude is approximately 1 volt.

## 2-13. EXTERNAL CAPACITOR

For certain plug-ins, provision is made for slower sweeps by connecting an external capacitor at the rear terminals of the Type 1100. A good quality polystyrene capacitor is recommended for best linearity of sweep. For each microfarad of added capacitance, the sweep duration will be slowed by about 50 seconds.

## 2-14. MANUAL TRIGGER CONTACTS

Some plug-ins have a manual trigger switch for controlling the start of external equipment. The contacts of this switch are brought to the rear terminals of the Type 1100 where they are conveniently available to be hooked into an external synchronizing circuit. These contacts are electrically isolated from all other circuits and ground.

## 2-15. OFF-GROUND OPERATION

The circuitry of the Type 1100 can be safely floated up to 500 volts DC off-ground by opening the link at the
rear. It is recommended that the case be tied to earth ground at the metal binding post at the rear. Off-ground signals riding on DC potentials may then be connected to the $\mathrm{X}, \mathrm{Y}$ or Z axis.

## 2-16. ADDITIONAL REAR TERMINALS ON RACKMOUNTED TYPE 1100

Additional terminals are provided at the rear of the rack-mounted Type 1100 for X and Y input and external synchronization. When connections are made at the rear, throw the slide selector switches in the plug-in for this mode of operation.

## 2-17. BANDWIDTH SWITCH

When high gain plug-ins are used at maximum sensitivity, it may be desirable to reduce the bandwidth of the amplifiers to reduce high frequency noise. Bandwidth switches for the X and Y axes are mounted internally and are easily accessible by removing the side covers. In the narrow-band position of the switches, the bandwidth is approximately 10KC. Narrower bandwidths may be obtained by increasing the size of capacitors, C305 and C405, mounted on the bandwidth switches.

## 2-18. CRT ALIGNMENT LEVER

This lever facilitates alignment of the trace of the CRT with the scale.

## 2-19. ASTIGMATISM ADJUSTMENT

The astigmatism adjustment for the CRT is available internally when the side-covers are removed. With the Analab Type 5AQP-B mono-accelerator tube, this adjustment need be set only when the CRT is replaced. The astigmatism adjustment should be made in conjunction with the front panel focus control for best uniform focus over the full screen area. Adjustment of the astigmatism control will change the deflection factors of the CRT and requires that the Post Amplifiers be recalibrated.

## 2-20. X AND Y AMPLIFIER GAIN

Internal adjustments are available for setting the gain of the X and Y post amplifiers. The sensitivity is usually set to 0.4 volts full scale ( 10 cm ) for calibrated use with plug-ins.

## TYPES 1120 AND $1120-R$

All of the foregoing operating instructions and controls for the Types 1100 and $1100-\mathrm{R}$, except for the X Display Selector, apply to the Types 1120 and $1120-\mathrm{R}$ dualtrace oscilloscopes. The additional operating instructions and controls for the Types 1120 and $1120-\mathrm{R}$ are explained on the following page.

## section II-operating instructions

## DUAL-TRACE TYPES 1120 AND 1120-R

## 2-21. DUAL-TRACE PRESENTATIONS

By means of an electronic switch incorporated in the Types 1120 and 1120-R oscilloscope main frames, all mating Analab dual-channel plug-ins permit dual-trace displays. Any two harmonically related signals may be stably synchronized and plotted against time; against another variable fed to the X axis, giving dual-trace X-Y plots; or against each other for single trace X-Y plots. Moreover, two non-harmonically related signals may be stably displayed on a common time base, using the alternate switching mode. With many types of displays possible with these dual-trace oscilloscopes, the user will find the Beam Finder extremely helpful in locating the traces or adjusting the controls. If the trace is lost at any time, switch to Auto sweep and then use the Beam Finder for location of the display.

## 2-22. Y DISPLAY FUNCTION SELECTOR

The $Y$ function switch has five positions to select (1) the A channel, (2) the B channel, (3) the A and B channels, simultaneously displayed by means of an electronic chopper, free running at approximately 40 KC , (4.) the A and B channels, alternately displayed by switching at the end of each sweep, and (5) A versus B plots.

## 2-23. $X$ DISPLAY FUNCTION SELECTOR

This is a 3-position switch that selects the signal displayed on the X axis: (1) any external signal fed to the input terminal located to the lower left of the control, (2) the calibrated 10 cm sweep, and (3) an ex. panded calibrated 50 cm sweep. The X axis sensitivity for external signals is a calibrated $40 \mathrm{mv} / \mathrm{cm}$.

## 2-24. A AND B SEPARATION CONTROL

This control adjusts the relative spacing of the two channels, while the Y Position Control moves the entire display. The two channels may be overlapped or separated, with either one above or below the other. The separation control is marked so as to indicate the direction of rotation for displaying either the $A$ or $B$ channel as the upper trace.

## 2-25. USE OF CHOPPED OR ALTERNATE SWITCHING MODES

The chopped mode of operation is best for displaying two repetitive Y signals against a sweep whose rate is $2.0 \mathrm{~ms} / \mathrm{cm}$ or slower. Above this sweep rate, the switching serrations may become objectionable and alternate trace switching is preferred. The chopped mode also permits the displaying of single transients on time bases of $100 \mu \mathrm{~s} / \mathrm{cm}$ or slower. Either the chopped or alternate switching mode may be used for dual-trace X-Y plots with the Auto Sweep and internal triggering modes selected to gate on the signals.

## 2-26. SYNCHRONIZING TWO HARMONICALLY RELATED SIGNALS

The simplest and most foolproof method for syn-
chronizing the dual-trace display when the two signals are harmonically related is to operate the trigger and sweep circuits with external trigger sources, With external triggering, the dual-trace display will synchronize as simply as a single channel scope. The triggering and sweep mode procedures described in any Analab manual for the plug-in apply. If external triggering is used, changes in separation of the two traces will not affect synchronization, either in the chopped or alternate switching modes. Auto sweep is recommended for simplest operation, unless the driven sweep mode is required to permit leveling to a particular point on the external trigger signal or for very low frequency trig. ger signals.

Since a minimum signal level of approximately 200 millivolts is required for external triggering, a trigger amplifier is added to the Types 1120 and 1120-R dualtrace main frames to simplify the stable triggering of harmonically related signals, using the external triggering mode, for levels as low as 100 microvolts/cm. The trigger amplifier has a bandwidth at the 3 db points of about 8 cps to 400 KC .

Except for a particular condition which will be discussed later, for synchronization of harmonically related signals of any signal level within the capabilities of a particular plug-in, connect the A channel Trigger Source signal from the output jack in the main frame to the External Input terminal in the plug-in. The trigger source signal is the amplified output of the A channel preamplifier and is of sufficient amplitude to synchronize the sweep externally for any on-screen A signal of 0.5 cm peak-to-peak or greater. If for any reason it is desirable to use the other signal of the dual trace display as the triggering source, then it should be connected to the A channel, from which the amplified trigger is derived.

If the foregoing procedure is used, the only conditions under which it will be necessary to use internal triggering of the dual-trace display is the synchronization of two non-harmonically related signals (see Section 2-27) or signals whose repetition rate is below the low frequency response of the AC coupled trigger amplifier.

For very slow transients or low repetition rate signals below about 5 cps , if either the A or B signals is above 200 millivolts, the level at which external trig. gering is possible, patch either signal directly to the External trigger input. Using external DC triggering and the chopped mode, stable patterns will easily be obtained. If the A and B signals are below 200 millivolts, switch to Internal DC triggering, Driven Sweep and the chopped mode and carefully level select for synchronization.

It should be emphasized that external triggering of the sweep, whenever possible, avoids any difficulties encountered with internal triggering and separation of the

## section II- operating instructions

traces. External triggering is mandatory for precise and fool-proof phase measurements, since both traces are then triggered and referenced by a common waveform.

## 2-27. SYNCHRONIZATION OF NON-HARMONICALLY RELATED SIGNALS

The excellent stability and lock-out of Analab trigger and sweep circuits makes it possible to display and synchronize independent, non-harmonically related signals on a common time base, using the alternate switching mode. Internal triggering is required.

With internal sync, stable patterns will be obtained, using auto or driven sweeps and DC coupled triggering, if the two traces are overlapped or only partially separated. Use the Trigger Level control for stable synchronization. The level control will probably have to be reset if the trace separation or Y position is changed. If complete separation of the traces is desired, the criticalness of synchronization will depend upon the signal waveform. The following routine is suggested to achieve stable traces as they are separated:

1. If one or both of the traces is unstable, using Auto sweeps and AC coupled triggers, vary the amount of separation slightly at the point of desired separation to change the duty cycle of the sweep and facilitate synchronization. If the traces do not lock,
2. Switch the trigger polarity. If unsuccessful,
3. With plug-ins that have variable length sweeps, vary the length of the time base slightly. This changes the sweep repetition rate without affecting the rate calibration.

## 2-28. Z INPUT AND CHOPPER BLANKING

In the chopped mode, the switching tails are blanked out by a signal fed to the cathode of the cathode-ray tube. If an external signal is to be fed to the Z axis (which uses the same cathode electrode of the CRT), connect the signal to the input terminals at the rear (see Section 2-11) and throw the internal slide-switch on the electronic-switch module to Z input. Return the slide switch to the chopper blanking position when external $Z$ input is not required.

## 2-29. SEPARATION BALANCE

The ability to separate the traces the same amount in either direction, with respect to two overlapped traces, depends primarily on the DC balance of the preamplifiers, the position in which the A and B null readout dials are left when null readout plug-ins are used, the degree of balance of the output stages of the preamplifiers, and the balance of the amplifiers in the electronic switch. The preamplifiers should be balanced after about a 15 minute warm-up and periodically thereafter over long runs. The readout dials can be used as secondary separation controls. The separation control itself will generally have sufficient range to compensate for any remaining unbalance in the system, and only in rare cases of tolerance build-up, as
tubes age, will a tube change be necessary to achieve overlap of the traces or complete separation.

## 2-30. PLUG-INS WITH NULL READOUT

When the dual-trace main frames are used with plugins that have Null Readout, the readout dials for the A and B channels function independently of each other. To minimize confusion of overlapping traces, the user may wish to separate the traces as much as possible while the null readout measurements of amplitude are being made.

## 2-31. USE OF NULL READOUT TO MEASURE PHASE

One of the important applications of dual-trace scopes is to measure relative phase between two signals. Plug-ins with Null Readout of sweep time can make such measurements very precisely and accurately. The method is as follows:

1. First turn both A and B preamplifiers to OFF.
2. With the separation control, overlap the two horizontal traces and position them to the horizontal Null axis. This establishes the zero reference for both waveforms, whose phase is being measured.
3. Turn on the A preamplifier and using the Driven Variable Rate mode, level select so that the waveform starts exactly at the horizontal zero axis.
4. Using Sweep Variable Rate control and the X Positioning control, set one cycle of the waveform to exactly 10 cm . One cycle, or $360^{\circ}$, now equals 10 cm . Full scale on the dial also equals 10 cm . Thus on the 0 to 1 scale, which has 100 divisions, each minor division now equals $3.6^{\circ}$.
5. Turn on Channel B.
6. Set the Null Readout dial to zero and line up one of the traces with the vertical null axis. Null balance the second trace to the same axis. Read the number of minor divisions on the readout dial and multiply by 3.6 for the answer in degrees.
7. Greater resolution in making this measurement can be had by using the calibrated 5 x sweep expansion. Each minor division then equals $3.6 \div 5=0.72$ degrees. By interpolating between minor divisions, at least $1 / 2$ degree resolution is possible for making phase measurements.

## 2-32. USE OF TRIGGER AMPLIFIER TO INCREASE GAIN

Since the trigger amplifier amplifies the output of the A channel preamplifier, it can be used to increase the sensitivity of the scope as a single-trace device. For example, with a Type 700 Plug-in the $100 \mu \mathrm{v} / \mathrm{cm}$ sensitivity can be increased to $10 \mu \mathrm{v} / \mathrm{cm}$ sensitivity with good signal-to-noise ratio. To work at this senisitivity, first throw the bandwidth switches to narrow the response to 10 KC and minimize high-frequency noise. Patch the Trigger Source Output to the B channel input. Set the B range control for the desired amplitude of low level signals. The bandpass of this high-gain system is about 5 cps to 10 KC .

# SECTION III - BLOCK DIAGRAMS 

## TYPES 1100 AND 1100-R

## 3-1. GENERAL

The Types 1100 and $1100-\mathrm{R}$ main frames consist of three major assemblies, (1) X and Y Post Amplifiers, (2) High Voltage Supply, (3) Low Voltage Supply.

## 3-2. Y POST AMPLIFIER

The output signal from either the $A$ or $B$ pre-amplifier in the plug-in may be switched into the $Y$ post amplifier by means of the X Display Function Switch. These balanced signals are fed to the first stage of the post amplifier, a cascode input circuit, and then to a balanced output stage connected to the $Y$ deflection plates. The Y positioning is in the post amplifier.

## 3-3. $\quad X$ POST AMPLIFIER

The output of the B pre-amplifier or the sweep sawtooth voltage is fed through the X Display Function Switch to the X post amplifier, identical to the $Y$ post amplifier. X positioning is located in the X post amplifier.

## 3-4. DIRECT CONNECTION TO DEFLECTION PLATES

When signals are connected directly to the deflection plates, the signals coming through the pre- and postamplifiers are disconnected by slide switches. However, X and Y positioning is maintained through two megohm coupling resistors between the post amplifiers and the deflection plates.

## 3-5. HIGH VOLTAGE SUPPLY

Approximately 3000 volts total accelerating potential is applied to the gun of the CRT. A regulated RF supply generates - 2700 volts for the cathode of the CRT and +300 V is applied to the accelerator electrode by the variable astigmatism control.

## 3-6. Z-AXIS INPUT

The trace can be intensity modulated by feeding signals to the cathode of the CRT.

## 3-7. LOW-VOLTAGE SUPPLY

Five regulated potentials are obtained from the low voltage supply, $400 \mathrm{~V}, 250 \mathrm{~V}, 100 \mathrm{~V},-165 \mathrm{~V}$ and 18 V . The 18 volt supply provides regulated DC power to some of the heaters of the pre-amplifier and post-amplifier stages. The regulated 1000 cycle squarewave calibrating signal is developed in the low-voltage supply.

## 3-8. OFF-GROUND OPERATION

A floating ground for all circuits of the Type 1100 is tied to case ground through a link at the rear of the lowvoltage supply. Opening this link permits off-ground operation of the type 1100 up to 500 volts DC.

## 3-9. 115 V OR 230V OPERATION

115 volt or 230 volt power line operation is obtained by changing the connections of the primary of the power transformer.

## HII

## 3-10. ELECTRONIC SWITCH

The output signals of the A and B preamplifiers are fed via the Y Display Function switch to an electronic switch which couples either or both signals to the $Y$ Post amplifier. Signals from channels A and B are fed to V900 and V901, respectively, which are amplifiers of approximately unity gain. These amplifiers are turned on and off at about a 40 KC repetition rate in the chopped mode and at the end of each sweep in the alternate mode by switching multivibrator V902. Transistors Q901 and Q902 couple and maintain the good waveshape of the squarewave switching signal that is fed to the on-off amplifier tubes. To prevent spurious switching transients from appearing on screen, the multivibrator signal is also coupled to a blanking amplifier which feeds blanking pulses to the cathode of the CRT during the switching interval.

The electronic switch circuitry is inserted between the Display Function switch and Y Post amplifier (see block diagram next page) to convert the Type 1100 main frame to dual-trace Type 1120 operation. The external X input of the Type 1120 is coupled directly to

## TYPES 1120 AND 1120-R

the X Post amplifier, which has a sensitivity of 40 $\mathrm{mv} / \mathrm{cm}$ and a bandwidth of DC-500 KC. The Trigger Amplifier takes the output of the Channel A preamplifier, amplifies the signal and makes it available at an output jack for use as an external sync source.



# SECTION IV MAINTENANCE 

## 4-1. REMOVAL OF PANELS

The side panels of the Types 1100 and 1120 are held in place by quick-disconnect fasteners. A small coin may be used to turn the large slotted-head screws in the fasteners. Rotate the fasteners about two turns to the left and pull the upper portion of the panel outward and upward. To remove the bottom panel, turn the instrument carefully on its back and remove the screws. Dust covers on the Types 1100-R and 1120-R are held in place with screws.

## 4-2. REVERSAL OF TILT FOOT

The tilt foot may be held at the front or rear. Holes are located in the front and rear frames to mount the brackets holding the tilt foot.

## 4-3. HIGH VOLTAGE SUPPLY

The circuits of the high voltage supply are readily accessible by removing three screws holding the cover. If the entire assembly is removed for any major service, be certain to replace the insulating plate between the high voltage supply and frame as the case of the high voltage supply must be grounded at only one point.

## 4-4. LOW VOLTAGE SUPPLY

All components for the low voltage supply are readily available after removing the side and bottom panels. The entire low voltage supply may be removed by unfastening the back panel and disconnecting the terminal strip with its plate from it. Remove the screws holding the upper 32 contact connector and pull it clear of the power supply. Remove the screws from the frame to the chassis and from the bulk-head. Finally, open the connecting plugs to the supply and slide it out through the rear. The connectors include a 12 prong connector, CRT heater connectors, two 3 prong signal connectors above the chassis and 3 prong transistor plug below the chassis.

## 4-5. CATHODE-RAY TUBE REPLACEMENT

To remove the CRT, disconnect the tube socket and loosen the clamp at the tube base. Remove the bezel and scale and pull the CRT through the front panel. After replacing the tube, reconnect the socket but do not fully tighten the base clamp. Using the alignment lever on the socket, and with the instrument operating with only a horizontal trace (use auto sweep), rotate the tube to align the trace with the scale. After replacing a CRT, the astigmatism control should be reset and the post amplifier sensitivities re-calibrated.

## 4-6. ILLUMINATED SCALE BULBS

Loosen the bulb socket mounts and slide them back for replacement of the scale illuminating bulbs. After replacement, slide the mount as far forward as possible and tighten the fastening screws.

## 4-7. TUBE REPLACEMENTS

No tube selection is required for any replacement in the Types $1100,1100-\mathrm{R}, 1120$ and $1120-\mathrm{R}$.

## 4-8. STANDARD PARTS

Standard parts can be purchased from Analab, one of its authorized service depots, or obtained locally.

When ordering any part, please include all the information in the replacement parts list and the type and serial number of the instrument.

## 4-9. SPECIAL PARTS

In addition to standard parts, a number of special parts are made for Analab by other manufacturers. These are most readily obtained by ordering directly from Analab or its local service depot.

## INSTALLATION OF TYPES 1100-R AND $1120-R$

## 4-10. GENERAL PROCEDURES

Analab oscilloscopes are designed for continuous operation at a maximum ambient temperature of $40^{\circ} \mathrm{C}$ $\left(104{ }^{\circ} \mathrm{F}\right)$. Attention to the ambient temperature becomes particularly important in enclosed rack installations which may include other heat generating equipment or may not have proper ventilating ports.

When locating the oscilloscope in the rack assembly, be certain that there is a free flow of air below and
above the instrument. Forced air ventilation is recommended, if necessary, to keep the ambient temperature below $40^{\circ} \mathrm{C}$.

Angle supports at the bottom of the oscilloscope should be provided to share the load with the front panel mount and also to facilitate installation and removal. Do not support the scope on a shelf so as to prevent the flow of air through the bottom. Similarly, if any service work is done on the instrument while it


FIGURE A - INSTALLATION OF TYPE 9002 SLIDES ON RACK-MOUNTABLE ANALAB OSCILLOSCOPES
is operating out of the rack installation, support the scope on wooden blocks at least one inch off the bench surface so as to permit proper air flow.

The preferred method for mounting the oscilloscope is with Analab Type 9002 Tiltable slides. These slides not only carry the load, but make it convenient to service the instrument without the need for removing it completely from the rack frame. With Type 9002 slides, the instrument may be supported entirely forward of the rack assembly. The slides permit rotation of the scope for easy access to the bottom.

## 4-11. INSTALLATION OF TYPE 9002 SLIDES

If the Type 9002 Slides were ordered with the oscilloscope, the smaller inner slide will already have been mounted at the factory.

If there are no rear vertical angle supports in the rack zabinet, mounting is best accomplished by first installing gusset plates, fastened to the front angles of the frame. Gusset plates may be fabricated by the user for a particular installation or may be purchased from Analab.

The front panel of the oscilloscope is $7^{\prime \prime}$ high. Determine the desired location of the $7^{\prime \prime}$ panel in the rack installation and mark the position of the top and bottom extremities of the panel on the front vertical angle supports of the frame. Similarly, mark the rear angle supports. Also put four center-line marks on the front and rear angles, spacing them so as to be midway between the $7^{\prime \prime}$ panel extremities and along the axis of the mounting holes in the vertical supporting angles. Front and rear markings must be accurate so that the slide tracks remain parallel.

In some rack frames, a hole will exist at the four center lines. If so, these holes should be at least $\frac{133^{\prime \prime}}{4}{ }^{\prime}$ and be countersunk from the front for a flush fit of an $82^{\circ}$ \#10 flat-head screw. Drill and countersink the four holes if they do not exist.

If it is not necessary to have a flush mounting of the front panel of the scope to the vertical support angles,

nor flush mounting of the slide support screws on the rear angles, then it will not be necessary to countersink the holes. Under these conditions, use the \#10 pan-head screws that are provided, rather than the flathead screws.

If the slides have been mounted at the factory, remove the left larger inner slide (see Figure A) and outer track by sliding them toward the rear and depressing the detent buttons. Separate the larger inner slide from the outer track.

See Fig. "B" for mounting outer track to cabinet.
Insert the larger inner slide into the outer track, from the rear, depressing the detent button to allow full insertion. Push the larger inner slide as far forward as possible until it is stopped by the detent button in the outer track.

Repeat procedure for the right outer track and larger inner slide.

You are now ready to mount the scope into the tracks. Holding the smaller inner slides in position with respect to the scope, slide the assembly into the larger inner slides, until stopped at the first detent position. In this position, the entire assembly may be rotated upward for access to the bottom of the scope.
To insert scope all the way into the rack frame, depress the detent buttons at the first stop, and then again at the second stop position. Continue pushing unit in so that larger inner slides moves all the way into the outer track.
Fasten scope to front vertical angles of frame at the four cut-outs in the front panel. (Manufacturers of rack cabinets generally furnish hardware for fastening equipment to the front angles.)

## 4-12. SERVICING THE RACK OSCILLOSCOPE

To service the oscilloscope from the top, remove the front panel mounting screws. Pull the assembly forward by the handles until the larger and smaller inner slides are extended as far as possible. CAUTION: Be certain that the rack installation is heavy enough to

## section IV - maintenance

prevent its tilting forward when the oscilloscope is extended. Remove the top cover. It may be necessary to depress the detents and move the scope forward to the first stop position in order to obtain access to the rear screw on the cover.

To service the scope from the bottom, pull it out to
the farthest forward detent position. Tilt the assembly up carefully and rotate it backward until the scope rests on the front panels of the rack cabinet. CAU TION: The signal leads and power cord may not be long enough to leave them connected when tilting the unit upward. Remove bottom cover for service.

## 4-13. TEST PROCEDURE

## X AND Y POST AMPLIFIERS, TYPES 1100 AND 1100-R

TEST EQUIPMENT AND ACCESSORIES
Analab Type 9001 Service Adapter to operate main frame with available plug-in Ballantine Type 420 Precision Voltage Calibrator or equivalent
Hewlett-Packard Type 211A Square Wave Generator or equivalent
Analab Type 1100/700 Oscilloscope or equivalent
SET DISPLAY FUNCTION SWITCH TO A VS. B.

| TEST | $Y$ INPUT | $X$ INPUT | OBSERVATION AND/OR ADJUSTMENT* |
| :---: | :---: | :---: | :---: |
| Focus and astigmatism | Grounded | Grounded | 1. Turn instrument on and allow 5 minutes warm up. <br> 2. Turn up intensity and adjust focus and astigmatism (R201 in main frame) for best spot size and uniformity over full screen area. |
| Y Post Gain | Use Ballantine Calibrator .2V P-P | Grounded | 1. Set $Y$ sensitivity adjust to give $\mathbf{5 c m}$ of deflection about center of screen. |
| $X$ Post Gain | Grounded | Use Calibrator .2V P-P | 1. Set $X$ sensitivity adjust to give 5 cm of deflection about center of screen. |
| Beam Finder | Use Calibrator .4V P-P | Use Calibrator .4V P-P | 1. Turn beam finder clockwise and turn $Y$ position knob to both exfremes. Ends of trace should stay on screen. <br> 2. Repeat (1) using $X$ position knob. |
| Y Post Amplifier square wave response | Use H-P 211A. <br> .4V P-P 100KC frequency | . $4 \mathrm{~V} 10 \mu \mathrm{sec}$ saw (attenvaited saw output from Analab scope) | 1. Adjust square wave amplitude to 10 cm . <br> 2. Measure rise time from 10 to $90 \%$. Should be no greater than $0.7 \mu \mathrm{sec}$ with no overshoot. |
| X Post Amplifier square wave response | . $4 \mathrm{~V} 10 \mu \mathrm{sec}$ saw | H-P 211A. .4V P-P 100 KC | 1. Repeat procedure for $Y$ Post Amplifier using X Post Amplifier. |

*Inability to meet specifications, when no adjustments are involved, indicates an off value or faulty component in the circuit under test.

## LOW VOLTAGE POWER SUPPLIES ADJUSTMENTS

1. Energize Power Supply at nominal line. Observe that the delay relay operates $15-25$ seconds later.
2. Measure the -165 voltage and adjust it to -165.0 .
3. Measure the following voltages at nominal (115V) low ( 104 V ) and high ( 127 V ) line and check the regulation and ripple against the values tabulated below. The voltages given below are not specifications. They are the mean voltages based upon a random sampling of a number of production units and are meant to serve only as a guide to troubleshooting and servicing.

SUPPLY POTENTIALS
Measured with Weston Model 931 or equivalent.


Note 1. The best indication that a supply is not regulating prop-

## section IV - maintenance

erly is a sudden rise in ripple voltage, greatly in excess of these typical values, as the line voltage is varied over its range.
Note 2. In measuring the ripple voltage, exclude and ignore any RF, calibrator or saw signals that may appear at the point of measurement. To eliminate saw and other spurious signals, it is best to make the ripple measurements with the sweep and the input to the amplifiers shut off.
5. Measure the calibration signal and observe that it is $95-105 \mathrm{mv}$. (Use oscilloscope.)
6. Measure the voltage at the junction of R101 and R100 with VTVM. It should be 145 to 175 V D.C.

## HIGH-VOLTAGE POWER SUPPLY CHECK

1. Turn Intensity Control counter clock-wise.
2. Switch Sweep Mode to "Manual."
3. Measure CRT cathode voltage supply $\mathrm{E}_{\mathrm{k}}=2700 \mathrm{~V}$
D.C. (Available at clock-wise end of focus control.)
4. Measure voltage drop from CRT cathode supply to CRT grid supply. +160 V (Available between clockwise ends of Intensity and Focus controls.)

## ELECTRONIC SWITCH, X AND Y POST AMPLIFIERS, TYPES 1120, $1120-\mathrm{R}$

| TEST | Y POST AMP. <br> INPUT <br> (TYPE 9001) | X POST AMP. <br> INPUT <br> (TYPE 9001) | Y DISPLAY FUNCTION (FRONT PANEL) | X DISPLAY FUNCTION (FRONT PANEL) | OBSERVATION AND/OR ADJUSTMENT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Focus and astigmatism | Gnd. | Gnd. | A vs. B |  | 1. Turn instrument on and allow 5 minutes warm up. <br> 2. Turn up intensity and adjust focus and astigmatism (R2O1 on main frame) for best spot size and uniformity over full screen area. |
| X Post Amplifier Gain | Gnd. | Ballantine Calibrator .2V P-P | A vs. B |  | 1. Set X sensitivity adjust (R402) to give 5 cm of deflection about center of screen. |
| Y Post Amplifier and Electronic Switch Gain | Gnd. | Ballantine Calibrator 2V P-P | B | X1 SWP | 1. Set Y sensitivity adjust (R302 on main frame) to give 5 cm of deflection about center of screen. |
|  | Ballantine Calibrator .2V P-P | Gnd. | A | X1 SWP | 2. Set Y sensitivity 2 (R922 on electronic switch TB901) to give 5 cm of deflection about center of screen. <br> 3. If Y sensitivity 2 cannot be set to give proper sensitivity inferchange V900 and V901 and repeat steps 1 and 2. |
| Chopped Mode Adjustment | Gnd. | Gnd. | A-B <br> Chop. | X1 SWP <br> ( $10 \mu \mathrm{sec} / \mathrm{cm}$ ) | 1. Adjust C904 and C905 (on electronic switch terminal strip) to obtain flatest possible chopper square wave over full range of $A$ \& B Separation control (Front panel), keeping settings approximately equal. <br> 2. Set Multi Adjust (R940 on electronic switch chassis) to further flatten square wave. <br> 3. Repeat steps $\mathbf{1}$ and $\mathbf{2}$ if nesessary. |
| Beam Finder | Ballantine Calibrator .2V P-P | Ballantine Calibrator .2V P-P | A-B Chop | X5 SWP <br> ( $1 \mu \mathrm{sec} / \mathrm{cm}$ ) | 1. Turn Beam Finder clockwise and turn Y Position Knob to both extremes. Ends of trace should stay on screen. <br> 2. Repeat step 1 using $X$ Position Knob. |
| $A$ and $B$ Channel square wave response | H.P. 211A .4V P-P 100KC freq. |  | A | X1 SWP <br> ( $1 \mu \mathrm{sec} / \mathrm{cm}$ ) | 1. Adjust square wave amplitude to 10 cm . <br> 2. Measure rise time from 10 to $90 \%$. Should be no more than $0.7 \mu \mathrm{sec}$ with less than $2 \%$ overshoot. |
|  |  | $\begin{gathered} \text { H.P. } 211 \mathrm{~A} \\ .4 \mathrm{~V} \text { P-P } \\ 100 \mathrm{KC} \text { freq. } \\ \hline \end{gathered}$ | B | XI SWP <br> ( $1 \mu \mathrm{sec} / \mathrm{cm}$ ) | 3. Repeat steps 1 and 2 for B channel. |
| $X$ Post Amplifier square wave response | .4V $10 \mu \mathrm{sec}$ saw (Attenuated saw output from main frame) | $\begin{aligned} & \text { H.P. } 211 \mathrm{~A} \\ & .4 \mathrm{~V} \text { P-P } \\ & 100 \mathrm{KC} \text { freq. } \end{aligned}$ | A vs. B |  | 1. Repeat procedure for $A$ and $B$ Channel using $X$ Post Amplifier. |

## section IV - maintenance

4-14. TERMINAL BOARD LAYOUT


## TBIO1 LOW VOLTAGE POWER

 SUPPLY 8500000024-14. TERMINAL BOARD LAYOUT (Continued)


TB401 X POST AMPLIFIER 850000001

tB103 LOW VOLTAGE POWER SUPPLY 850000015

| (15) -100K 1W $5 \%$ | R308-(15) |
| :---: | :---: |
| (14)- | -(14) |
| (13)-100k 1w $5 \%$ | R309-13 |
| (12)-1.2K $1 / 2 \mathrm{~W}$ | R307-12 |
| (11)-1N54A | CR300-(12) |
| (10)-1.2k $1 / 2 \mathrm{~W}$ | R306-(10) |
| (9) $-1 \times 54 \mathrm{~A}$ | CR301-9 |
| (8)- ${ }^{2}$. $2205 \mathrm{Kuf}{ }^{1 / 2 W}$ | ${ }_{\mathrm{C} 304}^{\mathrm{R} 311}>-8$ |
| (7)-1.5M 1/2W | R312-(7) |
| (6) $-2.74 \mathrm{~K} 1 / 2 \mathrm{~W} 1 \%$ | R304-6 |
| (5)-2.74K 1/2W $1 \%$ | R305-5 |
| (4)-7688 1/2W 1\% | R301- (4) |
| (3)-1008 1/2W | R333-3 |
| (2)- | -(2) |
| (1)-1008 1/2W | R332-(1) |

TB301 Y POST AMPLIFIER 850000000


4-15. REPLACEMENT PARTS
VENDOR CODE

| AB | Allen Bradley |
| :--- | :--- |
| AMP | Amperite |
| ANA | Analab |
| AU | Automatic |
| AX | Amperex |
| BL | Bussman, Littlefuse |
| BX | Bendix |
| CE | Centralab |
| CG | Corning Glass |
| CJ | Cinch Jones |
| CL | Clarostat |
| CTS | Chicago Telephone Supply |
| EM | EI Menco |
| ER | Erie |
| GA | Grigsby Allison |
| GE | General Electric |
| GU | Gudeman |


| HH | HH Smith |
| :--- | :--- |
| HO | Hopkins |
| IRC | International Resistance Co. |
| ITT | International Telephone |
| M | Motorola |
| OR | Ortron |
| RCA | RCA |
| RGTS | RCA, GE, Tung-Sol, Sylvania |
| PY | Pyramid |
| SO | Sangamo |
| SP | Sprague |
| ST | Stackpole |
| SY | Sylvania |
| SZ | Sarkes Tarzian |
| TI | Texas Instruments |
| TR | Transitron |
| WL | Ward Leonard |

## DESCRIPTION CODE

| CE | Capacitor Electrolytic | RFF | Resistor Fixed Film |
| :--- | :--- | :--- | :--- |
| CFGP | Capacitor Fixed General Purpose | RFM | Resistor Fixed Metal Film |
| CFM | Capacitor Fixed Miscellaneous | RFW | Resistor Wire Wound |
| CFP | Capacitor Fixed Precision | RVC | Resistor Variable Composition |
| CVC | Capacitor Ceramic Variable | RVWW | Resistor Variable Wire Wound |
| RFC | Resistor Fixed Composition | SA | Same As |

REPLACEMENT PARTS - TYPES 1100, $1100-R$


# section IV - maintenance 

| Symbol | Description | Vendor | Analab <br> Part No. | Symbal | Description | Vendor |  | Analab art No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R313 | RFC $1 / 2$ W 10\% 560 | AB | 021485611 | CR105 | SA CR100 |  |  |  |
| R314 | RFF 2W 1\% 200K | CG | 036520062 | CR106 | Semi Conductor Diode Silicon | ITT | 234 | 424091 |
| R315 | SA R314 |  |  | CR107 | SA CR106 |  |  |  |
| R316 | RFF 7W 5\% 7.5K | CG | 030775041 | CR300 | Semi Conductor Diode 1N54A | ER | 233 | 300541 |
| R317 | SA R316 |  | 03077504 | CR301 | SA CR300 |  |  |  |
| R318 | RFF 4W 5\% 7.85K | CG | 037778541 | CR400 | SA CR300 |  |  |  |
| R319 | SA R318 |  |  | CR401 | SA CR300 |  |  |  |
| R320 | RFC 1/2W 10\% 2.2 M | $A B$ | 021482251 |  | LAMPS |  |  |  |
| R321 R322 | SA R320 |  |  |  | Lamp Incandescent \#47 | GE | 251 | 434001 |
| R322 R323 | SA R105 |  |  | I101 | Lamp Incandescent \#47 | GE | 25 | 434001 |
| R330 | SA R224 |  |  |  |  |  |  |  |
| R331 | SA R224 |  |  |  | RELAYS |  |  |  |
| R332 | SA R125 |  |  |  |  |  |  |  |
| R333 | SA R125 <br> RFF $1 / 2 \mathrm{~W}$ <br> $1 \% 590$ |  |  | K101 | Relay, Time Delay 20 sec 6N020T | MP/OR | 262 | 010101 |
| R401 | RFF 1/2W 1\% 590 | CG | 034559031 |  |  |  |  |  |
| R402 | SA R302 |  |  |  | FUSES |  |  |  |
| R403 | RVC 1/1/W 5K 20\% | CE | 011150202 |  |  |  |  |  |
| R404 | SA R304 |  |  | F101 | Resistor Fuse Cartridge 112A (230V operation) | BL | 024 | 815201 |
| R406 | SA R306 |  |  | F101 | Resistor Fuse Cartridge 3A SB |  |  |  |
| R407 | SA R306 |  |  |  | (115V operation) | BL |  | 830 |
| R408 | SA R308 |  |  | F102 | Resistor Fuse 5A Pigtailed | BL |  | 650201 |
| R409 | SA R308 |  |  |  | INDUCTORS \& TRANSF | FORMER |  |  |
| R410 | RFF 2W 1\% 17.4K | CG | 036517451 |  | INDUCTORS \& TRANSF | FORMER |  |  |
| R411 | SA R103 |  |  | T101 | Transformer, Power | ANA |  | 100001 |
| R412 | SA R312 |  |  | T200 | Transformer, HV | ANA | 173 | 300001 |
| R413 | SA R313 |  |  | L201 | Inductor, Fixed, Ferrite 10 mh | ANA |  |  |
| R414 | SA R314 |  |  | L201 | Inductor, Fixed, Ferrite 10 mh |  |  |  |
| R415 | SA R314 |  |  |  | TRANSISTORS |  |  |  |
| R416 | SA R316 |  |  |  |  |  |  |  |
| R417 | SA R316 |  |  | Q101 | Transistor 2N376A | M |  | 703761 |
| R418 | SA R318 |  |  | Q102 | Transistor 2N1372 | TI | 181 | 213721 |
| R419 | SA R318 |  |  | Q103 | Transistor 2N1372 | TI |  | 213721 |
| R420 | SA R320 |  |  |  |  |  |  |  |
| R421 | SA R320 |  |  |  | SWITCHES |  |  |  |
| R423 | $\begin{array}{lllll}\text { RFF } & 1 / 2 W & 1 / 2 \% & 1.65 K \\ \text { RFF } \\ 1 / 2 W & 1 / 2 \% & 412\end{array}$ | CG | $\begin{array}{lll}034 & 416541 \\ 034 & 441 & 231\end{array}$ | S100 | Switch Toggle SPST | HH | 272 | 010101 |
| R425 | RFF $1 / 2$ W $1 / 2 \% 412$ | CG | 034441231 |  |  |  |  |  |
| R427 | RFC 1/2W 10\% 27K | AB | 021482731 | S301 | Switch, Slide DPDT | ST | 271 | 020201 |
| R428 |  |  |  | S302 | Switch Rotary Beam Finder | ANA | 270 | 000008 |
| R430 | SA R224 |  |  | S303 | SA S301 |  |  |  |
| R431 | SA R224 |  |  |  |  |  |  |  |
| R432 | SA R125 |  |  | S400 | Switch Rotary X Function | ANA | 270 | 000007 |
| R433 | SA R125 |  |  | S401 | SA S301 |  |  |  |
| R434 | SA R125 |  |  | S403 | SA S301 |  |  |  |
|  | TUBES |  |  |  | CAPACITORS |  |  |  |
| V101 | Tube Electron 6AS7 GA | GE | 203386201 | C101 | CE $150 \mu \mathrm{f}$ 150V Twist Lock |  |  |  |
| V102 | Tube Electron 6BH6 | RGTS | 200576302 | C102 | SA Cloi | SO/PY | 091 | 153002 |
| V103 | SA V102 |  |  | C103 | CE $150 \mu \mathrm{f} 250 \mathrm{~V}$ Twist Lock |  |  |  |
| V104 | Tube Electron EL86/6CW5 | AX | 200596301 | C103 | Mount | SO/PY | 091 | 153001 |
| V105 | SA V102 | AX | 200670601 | C 104 | SA Cl03 |  |  |  |
| V107 | Tube Electron 6BR8 | RGTS | 203596303 | C105 | CE 60 ¢f 200V Tubular | SO/PY | 091 | 602001 |
| V108 | Tube Electron 6BR8 | RGTS | 203596303 | C106 | CFGP Ceramic 02 uf 500 l |  |  |  |
| V200 | Tube Cathode Ray 5AQP7A | ANA | 223307001 | C108 | CE $10 \mu \mathrm{f} 350 \mathrm{~V}$ Tubular | So/py | 112 | 620501 |
| V200 | Tube Cathode Ray 5AQPIA | ANA | 223401001 | C108 C 109 | SA C107 | SO/PY |  |  |
| V200 | Tube Cathode Ray 5AQPIIA | ANA | 223511001 | C110 | CE $2000 \mu \mathrm{f} 30 \mathrm{~V}$ Twist Lock |  |  |  |
| V201 | SA V107 | SY | 200211101 |  | SA Mount | SO/PY | 091 | 204001 |
| V202 | Tube Electron 5642 | SY | 200211101 | C111 | SA C108 |  |  |  |
| V204 | Tube Electron EL86/6CW5 | AX | 200596301 | C112 | SA C107 |  |  |  |
| V301 | Tube Electron 6DJ8/ECC88 | AX | 203396302 | C114 C116 | SA C107 |  |  |  |
| V302 | Tube Electron 6BA8A | RGTS | 203596301 | C117 | CFP M.M. . 1 ¢f 20\% | PO |  |  |
| V303 | SA V302 |  |  | C118 | CFGP Ceramic $0.047 \mu \mathrm{f} 100 \mathrm{~V}$ | ER | 112 | 247501 |
| V401 | SA V301 |  |  | C119 | CPF Ceramic . $001 \mu \mathrm{f} 20 \% 500 \mathrm{~V}$ | $\checkmark$ ER | 084 | 910401 |
| V402 | SA V302 |  |  | C120 | CFP Ceramic . $005 \mu \mathrm{f} 20 \% 500 \mathrm{~V}$ | V ER | 084 | 910401 9501 |
| V403 | SA V302 |  |  | C121 | SA C107 |  |  | 950401 |
| SEMI-CONDUCTORS |  |  |  | C122 | CE $10 \mu \mathrm{f} 50 \mathrm{~V}$ Tubular | SP | 091 | 102002 |
|  |  |  |  | C124 | CFP Paper 10\% $0.1 \mu \mathrm{f}$ 600V | EM | 086 | 810601 |
| CR100 | Semi Conductor Diode Silicon | SZ | 234700001 | C125 | CFGP Ceramic $.002 \mu \mathrm{f} 500 \mathrm{~V}$ | ER | 084 | 920401 |
| CRIO1 | SA CR100 |  |  | C126 | SA C207 |  |  |  |
| CR102 | SA CR100 |  |  | C127 | In rack units only |  |  |  |
| CR103 | SA CR100 |  |  | C128 |  |  |  |  |
| CR104 | SA CR100 |  |  | C129 |  |  |  |  |



| RESISTORS |  |  |  | CAPACITORS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Description | Vendor | Analab Part No. | Symbol | Description | Vendor | Analab Part No. |  |
| R303 | RVC 1/4W 20\% 5K | CE | 011150204 | C900 | CFP Mica 5\% $24 \mu \mu \mathrm{f}$ | EM | 082 | 724201 |
| R434 | RFC 1/2W 10\% 1 Meg. | AB | 021481051 | C901 | CFP Mica 5\% $24 \mu \mu \mathrm{f}$ | EM | 082 | 724201 |
| R900 | RFC 1/2W 10\% 15K | AB | 021481531 | C902 | CFP Mica 5\% $24 \mu \mu \mathrm{f}$ | EM | 082 | 724201 |
| R901 | RFC $1 / 2 \mathrm{~W}$ 10\% 100K | AB | 021481041 | C903 | CFP Mica $5 \% 24 \mu \mu \mathrm{f}$ | EM | 082 | 724201 |
| R902 | RFC 1⁄2W 10\% 8.2K | $A B$ | 021488221 | C904 | CVC 4.5-2 $\mu \mu \mathrm{f}$ E | ER/CE | 073 | 252001 |
| R903 | RFC 1/2W 5\% 2.7M | AB | 021472751 | C905 | CVC 4.5-25 $\mu$ Hf | ER/CE | 073 | 252001 |
| R904 | RFC $1 / 2 \mathrm{~W}$ 10\% 15K | AB | 021481531 | C906 | CFP Comp 10\% $1.5 \mu \mu \mathrm{f}$ | ST | 085 | 815101 |
| R905 | RFC 1 1/2W 10\% 1K | AB | 021481021 | C907 | CFP Comp 10\% $1.5 \mu \mu \mathrm{f}$ | ST | 085 | 815101 |
| R906 | RFC $1 / 2 \mathrm{~W}$ 5\% 1.2 M | $A B$ | 021471251 | C908 | CFP Comp 10\% $1.5 \mu \mu \mathrm{f}$ | ST | 085 | 815101 |
| R907 | RFC 2W 5\% 20K | AB | 021672031 | C909 | CFP Comp 10\% $1.5 \mu \mu \mathrm{f}$ | ST | 085 | 815101 |
| R908 | RFC $1 / 2 \mathrm{~W}$ 10\% 15K | AB | 021481531 | C910 | CFP Mica $5 \% 270 \mu \mu \mathrm{f}$ | EM | 0827 | 727301 |
| R909 | RFC 1 12W ${ }^{\text {W }}$ 10\% 0 2.2K | AB | 021482221 | C911 | CE $2 \mu \mathrm{f} 50 \mathrm{~V}$ | PY | 091 | 201001 |
| R910 | RFC $1 / 2 \mathrm{~W}$ 10\% 1K | AB | 021481021 | C912 | CFP Ceramic 500V . 005 20\% | ER | 084 | 950401 |
| R911 | RFC $1 / 2 \mathrm{~W}$ 5\% 1.2M | $A B$ | 021471251 | C913 | CFP Ceramic 500V . 005 20\% | ER | 084 | 950401 |
| R912 | RFC $1 / 2 \mathrm{~W}$ 10\% 1K | AB | 021481021 | C914 | CFP Mica 5\% $24 \mu \mu \mathrm{f}$ | EM | 082 | 724201 |
| R913 | RFC $1 / 2 \mathrm{~W}$ 10\% 15K | $A B$ | 021481531 | C915 | CFP Mica 5\% $24 \mu \mu \mathrm{f}$ | EM | 0827 | 724201 |
| R914 | RFF 1/2W 10\% 8.2K | $A B$ | 021488221 | C916 | CFP M.M. $20 \% .1 \mu \mathrm{f} 200 \mathrm{~V}$ | PO | 089 | 910601 |
| R915 | RFF $1 / 2 \mathrm{~W}$ W 1\% 6.04K | CG | 034560441 | C917 | CFP Paper 10\% . $1 \mu \mathrm{ff} 600 \mathrm{~V}$ | EM | 086 | 810601 |
| R916 | RFC 1/2W 10\% 15K | $A B$ | 021481531 | C918 | CFGP Ceramic 500V $02 \mu \mathrm{f}$ | ER | 112 | 620501 |
| R917 | RFC 1/2W 5\% 1.1M | AB | 021472751 | C919 | CFP Mica 5\% $130 \mu \mu \mathrm{f}$ | EM | 082 | 713301 |
| R918 | RFC $1 / 2 W$ 10\% 100 | $A B$ | 021481011 | C920 | CFGP Ceramic 500V . $02 \mu \mathrm{f}$ | ER | 112 | 620501 |
| R919 | RFC $1 / 2$ W 10\% 100 | AB | 021481011 | C921 | CFP Met. Paper 20\% $0.5 \mu \mathrm{f}$ | HO | 087 | 950601 |
| R920 | RFF $1 / 2 \mathrm{~W}$ 1\% 82.5K | CG | 034582551 | C922 | CFP Comp. $10 \% 1.5 \mu \mu \mathrm{f}$ | ST | 085 | 815101 |
| R921 | RFF $1 / 2 \mathrm{~W}$ W 1\% 3.48K | CG | 034534841 | C923 | CFP Comp. 10\% $1.5 \mu \mu \mathrm{f}$ | ST | 085 | 815101 |
| R922 | RVC.IW 30\% 1K | ANA | 011010203 |  |  |  |  |  |
| R923 | RFF $1 / 2 \mathrm{~W}$ 1\% 3.09 K | CG | 034530941 |  | TUBES |  |  |  |
| R924 | RFF $1 / 2 \mathrm{~W} \quad 1 \% 82.5 \mathrm{~K}$ | CG | 034582551 |  | TUBES |  |  |  |
| R925 | RFF $1 / 2 \mathrm{~W}$ 1\% 6.04 K | CG | 034560441 | V900 | Tube Electron 12AT7 | RGTS | 203 | 394303 |
| R926 | RFF $1 / 2 \mathrm{~W}$ 1\% 82.5K | CG | 034582551 | V901 | Tube Electron 12AT7 | RGTS | 203 | 394303 |
| $\mathrm{R927}$ | RVC 1/4W 2K 20\% | ANA | 011120202 | V902 | Tube Electron 12AU7 | RGTS | 203 | $394301$ |
| R928 | RFF $1 / 2 \mathrm{~W} \quad 1 \% 82.5 \mathrm{~K}$ | CG | 034582551 | V903 | Tube Electron 6021 | RAY | 203 | 316301 |
| R 929 | RFF $1 / 2 \mathrm{~W}$ (1\% 82.5K | CG | 034582551 |  |  | RAY |  | 316301 |
| R930 | RFC $11 / 2$ W $10 \% 100$ | AB | 021481011 |  | SEMICONDUCTOR DIOD | DES |  |  |
| R931 | RFF $1 / 2 \mathrm{~W}$ 1\% 3.48K | CG | 034534841 |  | SEMICONDUCTOR DIOD |  |  |  |
| R932 | RFF $1 / 2 \mathrm{~W} \quad 1 \% 3.48 \mathrm{~K}$ | AB | 034534841 | CR900 |  |  |  | 300341 |
| R933 | RFC $11 / 2 W$ W $10 \% 100$ | $A B$ | 021481011 | CR901 | Semiconductor Diode IN34A ER | ER/SY | 233 | $300 \quad 341$ |
| R934 | RFF $1 / 2 \mathrm{~W}$ 1\% 82.5K | CG | 034582551 034 | CR902 | Semiconductor Diode 1N38A ER/ | ER/SY | 233 | 400381 |
| R935 | RFF $1 / 2 \mathrm{~W}$ 1\% 165K | CG | 034516561 | CR903 | Semiconductor Diode 1N34A ER/ | ER/SY | 233 | $300 \quad 341$ |
| R936 | RFF $1 / 2 \mathrm{~W}$ W 1\% 165K | CG | 034516561 | CR904 | Semiconductor Diode 1N34A ER/ | ER/SY | 233 | 300341 |
| R937 | RFC $1 / 1 / 2 \mathrm{~W} \quad 10 \% 100$ | AB | 021481011 |  |  | R/SY |  | 30031 |
| $\mathrm{R938}$ | RFF $1 / 2 \mathrm{~W}$ W $1 \%$ 6.04K | CG | 034560441 |  | TRANSISTORS |  |  |  |
| R939 | RFC 1/2W 10\% 47K | $A B$ | $021484731$ |  | Transistor PNP Germanivm PADT |  |  |  |
| R940 | RVC $1 / 2 \mathrm{~W}$ 20\% 10K | ANA | 011110302 | Q900 | Transistor PNP Germanium PADT-2 | 23 AX | 181 | 100231 |
| R941 | RF Comp. 2W 10\% 22K | $A B$ | 021682231 | Q901 | Transistor PNP Germanium PADT-2 | 23 AX | 181 | 100231 |
| R942 | RFC $1 / 2$ W $10 \% 1 K$ | $A B$ | 021481021 | Q902 | Transistor PNP Germanium PADT-2 | 23 AX | 181 | 100231 |
| R943 | RFC 1/2W 10\% 100 | $A B$ | 021481011 |  |  |  |  |  |
| R944 | RFC $1 / 2 \mathrm{~W}$ 10\% 10 | $A B$ | 021481001 |  | SWITCHES |  |  |  |
| R945 | RFC $1 / 2 \mathrm{~W}$ (10\% 56K | AB | 021485631 | 5900 | Switch, Rotary, Y Display Function |  |  |  |
| R946 |  |  |  | 5901 | Switch, Rotary, X Display Function | ANA | 270 | 000012 |
| R947 R948 | $\begin{array}{lllll}\text { RFC } & 1 / 2 W & 10 \% & 100 \\ \text { RFC } & 1 / 2 W & 10 \% & 100\end{array}$ | AB $A B$ | $\begin{array}{lll}021 & 481 & 011 \\ 021 & 481 & 011\end{array}$ | S902 | Switch, Slide, DPDT | ANA | 271 | 020201 |
| R948 R949 | RFC 2 W 5\% 27 K | $A B$ | 021672731 |  |  |  |  |  |
| R950 | RFC 2W 5\% 20K | $A B$ | 021672031 |  | ERMINAL BOARDS |  |  |  |
| R951 | RFC $1 / 2 \mathrm{~W}$ W 10\% 6.8K | $A B$ | 021486821 | TB900 | Terminal Board Assembly | ANA | 850 | 000014 |
| R952 | RFC $1 / 2 \mathrm{~W}$ W 10\% 6.8K | $A B$ | 021486821 | TB901 | Terminal Board Assembly | ANA | 850 | 000013 |
| R953 | RFC $1 / 2 \mathrm{~W}$ 10\% 2.2 M | $A B$ | 021482251 | TB902 | Terminal Board Assembly | ANA | 850 | 000016 |









changes

1. C997 II LOCATED on tB900.


terminal a carbles o.3y ac at +125 y instiad of + isov

## SECTION V

## WARRANTY

## AND REPAIRS

## 5-1. CLAIM FOR DAMAGE IN SHIPMENT

If the instrument is damaged in any way or fails to operate upon arrival, a claim should be filed with the carrier. A full report of the damage should be obtained from the claim agent and a copy forwarded to Analab. We will assist as much as possible in helping you settle the claim and arrange for repair or replacement. Please include type and serial numbers when referring to this equipment for any reason.

## 5-2. WARRANTY

Analab Instrument Corporation warrants for a period of one year after delivery to the original purchaser that each instrument it manufactures is free from defects in material or workmanship. (Power transformers manufactured by or for Analab carry a five year warranty.) Repairs or service under warranty will be made when the instrument has been returned to Analab or one of its authorized service depots, transportation charges prepaid, by the original purchaser, and when, upon our oxamination, it is determined to our satisfaction to be defective. Liability under this warranty is limited to service or adjustment of any instrument returned to the factory or authorized service depot and to replacement of any defective parts. If the defect has been caused by
misuse or abnormal conditions of operation, repairs will be billed at normal service rates, but an estimate will be submitted for approval before work is started.

## 5-3. RETURNING INSTRUMENTS FOR REPAIR, IN OR OUT OF WARRANTY

If any malfunction develops, please take the following steps:
A.-Send full details of the fault and include type and serial numbers. Upon receipt of this information we will send you service instructions or shipping instructions to return the instrument to Analab or one of its authorized service depots.
B.-If the instrument is to be shipped to us or a service depot, forward it transportation prepaid. If requested, an estimate of the charges will be made before the work begins in those cases where the instrument is not covered by warranty.

## 5-4. PACKING

Whenever possible, return the instrument in its original carton and packing. If such is no longer available, pack the instrument in a strong exterior container. The instrument should be surrounded with excelsior or similar shock-absorbing material.

# ANALAB INSTRUMENT CORPORATION 

30 Canfiold Road

Cedar Grove, Essex County, N. J., U.S.A.
Phone: CEnter 9-6500
Cable Address: ANALAB

## ANALAB INSTRUMENT CORPORATION

30 Canfield Road, Cedar Grove, N.J., U.S.A.

## ADDENDUM TO INSTRUCTION MANUAL Types 1100, 1100R l120, l120R <br> Oscilloscope Main Frames

Supersedes Section 4-13, pages 10 and 11 , covering Low Voltage Power Supplies
Adjustments.

1. Energize Power Supply at nominal line. Observe that the delay relay operates 15-25 seconds later.
2. Measure the -165 voltage and adjust it to -165.0 .
3. Measure the following voltages at nominal (115V) low (104V) and high (127V) line and check the regulation and ripple against the values tabulated below. The voltages given below are not specifications. They are the mean voltages based upon a random sampling of a number of production units and are meant to serve only as a guide to troubleshooting and servicing.

SUPPLY POTENTIALS
Measured with Weston Model 931 or equivalent.

| Nominal | Range | Nominal |  |
| :--- | :--- | :--- | :--- |
|  |  | Range |  |
| 400 | $402-418$ | -3.2 | -2.7 to 3.6 |
| 250 | $243-253$ | -165 | -165.0 |
| 100 | $100-104$ | $-6.3 \mathrm{~A} . \mathrm{C}$. |  |
| 15.3 | $14.5-16.1$ |  |  |

## *Measured at power transformer

4. Typical Measurements with Line Voltage Variation

| Supply | Regulation | Ripple |
| :--- | :--- | :--- |
| -165 volts | $\pm 0.2 \%$ | $5 \mathrm{mv} \mathrm{p-p}$ |
| 100 | $\pm 0.5$ | 5 |
| 250 | $\pm 0.5$ | 25 |
| 400 | $\pm 0.5$ | 50 |
| 15.3 | $\pm 1.0$ | 30 |
| -3.2 | $\pm 2.0$ | 30 |

The best indication that a supply is not regulating properly is a sudden rise in ripple voltage, greatly in excess of these typical values, as the line voltage is varied over its range.

Note 2. In measuring the ripple voltage, exclude and ignore any RF, calibrator or saw signals that may appear at the point of measurement. To eliminate saw and other spurious signals, it is best to make the ripple measurements with the sweep and the input to the amplifiers shut off.
5. Measure the calibration signal and observe that it is $95-105 \mathrm{mv}$. (Use oscilloscope).
6. Measure the voltage at the junction of R101 and R100 with VTVM. It should be 145 to 175 V D.C.

## ADDITIONS \& CORRECTIONS

## TO PARTS LIST

TYPE 1100, 1100-R, 1120, and 1120-R

| R 101 | RFC, $1 / 2 \mathrm{w}, 10 \%, 68 \mathrm{~K}$ | AB | 021486831 |
| :--- | :--- | :--- | :--- |
| R 103 | RFC, $1 / 2 \mathrm{w}, 10 \%, 220 \mathrm{~K}$ | AB | 021482241 |
| R 136 | SA, R 103 |  |  |
| R 202 | SA, R 103 |  |  |
| R 311 | SA, R 103 |  |  |
| R 411 | SA, R 103 |  |  |
| R 434 | SA, R 125 |  |  |
| R223 | RFC, $1 / 2 \mathrm{w}, 10 \%, 2.7 \mathrm{~m}$ | AB | 021482751 |

## IN TYPE 1100 ONLY

C 300
C 301

CFP, ceramic, $10 \%, .50$ uuf ST 085850001
SA, C 300
a
.

